On Time Optimisation of Centroidal Momentum Dynamics

نویسندگان

  • Brahayam Ponton
  • Alexander Herzog
  • Stefan Schaal
  • Ludovic Righetti
چکیده

Recently, the centroidal momentum dynamics has received substantial attention to plan dynamically consistent motions for robots with arms and legs in multi-contact scenarios. However, it is also non convex which renders any optimization approach difficult and timing is usually kept fixed in most trajectory optimization techniques to not introduce additional non convexities to the problem. But this can limit the versatility of the algorithms. In our previous work, we proposed a convex relaxation of the problem that allowed to efficiently compute momentum trajectories and contact forces. However, our approach could not minimize a desired angular momentum objective which seriously limited its applicability. Noticing that the non-convexity introduced by the time variables is of similar nature as the centroidal dynamics one, we propose two convex relaxations to the problem based on trust regions and soft constraints. The resulting approaches can compute time-optimized dynamically consistent trajectories sufficiently fast to make the approach realtime capable. The performance of the algorithm is demonstrated in several multi-contact scenarios for a humanoid robot. In particular, we show that the proposed convex relaxation of the original problem finds solutions that are consistent with the original non-convex problem and illustrate how timing optimization allows to find motion plans that would be difficult to plan with fixed timing †.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Computation of the Humanoid Centroidal Dynamics and Application for Whole-Body Control

The control of centroidal momentum has recently emerged as an important component of whole-body humanoid control, resulting in emergent upper-body motions and increased robustness to pushes when included in whole-body frameworks. Previous work has developed specialized computational algorithms for the Centroidal Momentum Matrix (CMM) and its derivative, which relate rates of change in centroida...

متن کامل

Centroidal dynamics of a humanoid robot

The center of mass (CoM) of a humanoid robot occupies a special place in its dynamics. As the location of its effective total mass, and consequently, the point of resultant action of gravity, the CoM is also the point where the robot’s aggregate linear momentum and angular momentum are naturally defined. The overarching purpose of this paper is to refocus our attention to centroidal dynamics: t...

متن کامل

Improved initialisation for centroidal Voronoi tessellation and optimal Delaunay triangulation

Centroidal Voronoi tessellations and optimal Delaunay triangulations can be approximated efficiently by non-linear optimisation algorithms. This paper demonstrates that the point distribution used to initialise the optimisation algorithms is important. Compared to conventional random initialisation, certain low-discrepancy point distributions help convergence towards more spatially regular resu...

متن کامل

A Reactive and Efficient Walking Pattern Generator for Robust Bipedal Locomotion

Available possibilities to prevent a biped robot from falling down in the presence of severe disturbances are mainly Center of Pressure (CoP) modulation, step location and timing adjustment, and angular momentum regulation. In this paper, we aim at designing a walking pattern generator which employs an optimal combination of these tools to generate robust gaits. In this approach, first, the nex...

متن کامل

Robust optimal planning and control of non-periodic bipedal locomotion with a centroidal momentum model

This study presents a theoretical method for planning and controlling agile bipedal locomotion based on robustly tracking a set of non-periodic keyframe states. Based on centroidal momentum dynamics, we formulate a hybrid phase-space planning and control method which includes the following key components: (i) a step transition solver that enables dynamically tracking non-periodic keyframe state...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1709.09265  شماره 

صفحات  -

تاریخ انتشار 2017